1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
use std::alloc::{alloc, dealloc, realloc, Layout};
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut, Index, IndexMut};
use std::ptr::NonNull;
use std::{fmt, mem, ptr, slice};
use typenum::{PowerOfTwo, Unsigned};

pub use typenum;

/// AlignedVec is an over-aligned vector where the element is aligned on a `ALIGN` byte boundary.
pub struct AlignedVec<T, ALIGN: Unsigned + PowerOfTwo> {
    ptr: NonNull<T>,
    cap: usize,
    len: usize,
    _marker: PhantomData<T>,
    _align: PhantomData<ALIGN>,
}

impl<T, ALIGN: Unsigned + PowerOfTwo> AlignedVec<T, ALIGN> {
    pub fn new() -> Self {
        assert_ne!(mem::size_of::<T>(), 0, "AlignedVec doesn't support ZSTs");
        assert!(
            ALIGN::to_usize() >= mem::align_of::<T>(),
            "ALIGN is smaller than alignment of T"
        );
        Self {
            ptr: NonNull::dangling(),
            cap: 0,
            len: 0,
            _marker: PhantomData,
            _align: PhantomData,
        }
    }

    pub fn with_capacity(capacity: usize) -> Self {
        assert_ne!(mem::size_of::<T>(), 0, "AlignedVec doesn't support ZSTs");
        assert!(
            ALIGN::to_usize() >= mem::align_of::<T>(),
            "ALIGN is smaller than alignment of T"
        );
        if capacity == 0 {
            Self::new()
        } else {
            let size = capacity
                .checked_mul(mem::size_of::<T>())
                .expect("Size overflow");
            unsafe {
                let ptr = alloc(
                    Layout::from_size_align(size, ALIGN::to_usize()).expect("Illegal layout"),
                );
                Self {
                    ptr: NonNull::new(ptr as *mut T).expect("Allocation failed"),
                    cap: capacity,
                    len: 0,
                    _marker: PhantomData,
                    _align: PhantomData,
                }
            }
        }
    }

    pub fn len(&self) -> usize {
        self.len
    }

    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    pub fn capacity(&self) -> usize {
        self.cap
    }

    pub fn as_ptr(&self) -> *const T {
        self.ptr.as_ptr()
    }

    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.ptr.as_ptr()
    }

    pub fn clear(&mut self) {
        self.truncate(0)
    }

    pub fn truncate(&mut self, len: usize) {
        // This is safe because:
        //
        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
        //   case avoids creating an invalid slice, and
        // * the `len` of the vector is shrunk before calling `drop_in_place`,
        //   such that no value will be dropped twice in case `drop_in_place`
        //   were to panic once (if it panics twice, the program aborts).
        unsafe {
            // Note: It's intentional that this is `>` and not `>=`.
            //       Changing it to `>=` has negative performance
            //       implications in some cases. See #78884 for more.
            if len > self.len {
                return;
            }
            let remaining_len = self.len - len;
            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
            self.len = len;
            ptr::drop_in_place(s);
        }
    }

    pub fn reserve(&mut self, additional: usize) {
        let new_cap = self.len + additional;
        if new_cap > self.cap {
            let new_cap = new_cap
                .checked_next_power_of_two()
                .expect("cannot reserve a larger AlignedVec");
            let new_size = new_cap
                .checked_mul(mem::size_of::<T>())
                .expect("Size overflow");
            assert_ne!(new_size, 0, "AlignedVec doesn't support ZSTs");
            if self.cap == 0 {
                unsafe {
                    let layout = Layout::from_size_align(new_size, ALIGN::to_usize())
                        .expect("Illegal Layout");
                    self.ptr = NonNull::new(alloc(layout) as *mut T).expect("Allocation failed");
                    self.cap = new_cap;
                }
            } else {
                unsafe {
                    let new_ptr =
                        realloc(self.ptr.as_ptr() as *mut u8, self.layout(), new_size) as *mut T;
                    self.ptr = NonNull::new(new_ptr).expect("Reallocation failed");
                    self.cap = new_cap;
                }
            }
        }
    }

    pub fn pop(&mut self) -> Option<T> {
        if self.len == 0 {
            None
        } else {
            self.len -= 1;
            unsafe { Some(ptr::read(self.ptr.as_ptr().add(self.len))) }
        }
    }

    pub fn push(&mut self, elem: T) {
        unsafe {
            self.reserve(1);
            self.as_mut_ptr().add(self.len).write(elem);
            self.len += 1;
        }
    }

    pub fn as_slice(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
    }

    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
    }

    fn layout(&self) -> Layout {
        let size = self
            .cap
            .checked_mul(mem::size_of::<T>())
            .expect("Size overflow");
        Layout::from_size_align(size, ALIGN::to_usize()).expect("Illegal Layout")
    }
}

impl<T: Clone, ALIGN: Unsigned + PowerOfTwo> AlignedVec<T, ALIGN> {
    pub fn resize(&mut self, new_len: usize, value: T) {
        let len = self.len();

        if new_len > len {
            self.extend_with(new_len - len, value)
        } else {
            self.truncate(new_len);
        }
    }

    fn extend_with(&mut self, n: usize, value: T) {
        self.reserve(n);

        unsafe {
            let mut ptr = self.as_mut_ptr().add(self.len());
            // Use SetLenOnDrop to work around bug where compiler
            // might not realize the store through `ptr` through self.set_len()
            // don't alias.
            let mut local_len = SetLenOnDrop::new(&mut self.len);

            // Write all elements except the last one
            for _ in 1..n {
                ptr::write(ptr, value.clone());
                ptr = ptr.offset(1);
                // Increment the length in every step in case next() panics
                local_len.increment_len(1);
            }

            if n > 0 {
                // We can write the last element directly without cloning needlessly
                ptr::write(ptr, value);
                local_len.increment_len(1);
            }

            // len set by scope guard
        }
    }
}

impl<T, ALIGN: Unsigned + PowerOfTwo> Drop for AlignedVec<T, ALIGN> {
    #[inline]
    fn drop(&mut self) {
        let elem_size = mem::size_of::<T>();

        if self.cap != 0 && elem_size != 0 {
            // drop all elements by popping them
            while self.pop().is_some() {}
            unsafe {
                dealloc(self.ptr.as_ptr() as *mut u8, self.layout());
            }
        }
    }
}

impl<T: Clone, ALIGN: Unsigned + PowerOfTwo> Clone for AlignedVec<T, ALIGN> {
    #[inline]
    fn clone(&self) -> Self {
        unsafe {
            let mut result = Self::with_capacity(self.len);
            result.len = self.len;
            ptr::copy_nonoverlapping(self.as_ptr(), result.as_mut_ptr(), self.len);
            result
        }
    }
}

impl<T, ALIGN: Unsigned + PowerOfTwo> Deref for AlignedVec<T, ALIGN> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<T, ALIGN: Unsigned + PowerOfTwo> DerefMut for AlignedVec<T, ALIGN> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<T, ALIGN: Unsigned + PowerOfTwo> From<&[T]> for AlignedVec<T, ALIGN>
where
    T: Clone,
{
    fn from(slice: &[T]) -> Self {
        let mut v = AlignedVec::with_capacity(slice.len());
        slice.iter().cloned().for_each(|elem| v.push(elem));
        v
    }
}

impl<T, I: slice::SliceIndex<[T]>, ALIGN: Unsigned + PowerOfTwo> Index<I> for AlignedVec<T, ALIGN> {
    type Output = I::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        Index::index(&**self, index)
    }
}

impl<T, I: slice::SliceIndex<[T]>, ALIGN: Unsigned + PowerOfTwo> IndexMut<I>
    for AlignedVec<T, ALIGN>
{
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        IndexMut::index_mut(&mut **self, index)
    }
}

impl<T: fmt::Debug, ALIGN: Unsigned + PowerOfTwo> fmt::Debug for AlignedVec<T, ALIGN> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.as_slice().fmt(f)
    }
}

impl<T, ALIGN: Unsigned + PowerOfTwo> Default for AlignedVec<T, ALIGN> {
    fn default() -> Self {
        Self::new()
    }
}

// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
//
// The idea is: The length field in SetLenOnDrop is a local variable
// that the optimizer will see does not alias with any stores through the Vec's data
// pointer. This is a workaround for alias analysis issue #32155
struct SetLenOnDrop<'a> {
    len: &'a mut usize,
    local_len: usize,
}

impl<'a> SetLenOnDrop<'a> {
    #[inline]
    fn new(len: &'a mut usize) -> Self {
        SetLenOnDrop {
            local_len: *len,
            len,
        }
    }

    #[inline]
    fn increment_len(&mut self, increment: usize) {
        self.local_len += increment;
    }
}

impl Drop for SetLenOnDrop<'_> {
    #[inline]
    fn drop(&mut self) {
        *self.len = self.local_len;
    }
}

unsafe impl<T: Send, ALIGN: Unsigned + PowerOfTwo> Send for AlignedVec<T, ALIGN> {}
unsafe impl<T: Sync, ALIGN: Unsigned + PowerOfTwo> Sync for AlignedVec<T, ALIGN> {}

#[cfg(test)]
mod tests {
    use crate::AlignedVec;
    use typenum::U32;

    #[test]
    fn alignment() {
        let av: AlignedVec<_, U32> = AlignedVec::from(&[0_u16; 64][..]);
        assert_eq!(av.as_ptr() as usize % 32, 0)
    }

    #[test]
    fn alignment_after_realloc() {
        let mut av: AlignedVec<_, U32> = AlignedVec::new();
        for i in 0..64 {
            av.push(i);
        }
        assert_eq!(av.as_ptr() as usize % 32, 0)
    }

    #[test]
    fn slice_is_legal() {
        let av: AlignedVec<_, U32> = AlignedVec::from(&[0_u16; 64][..]);
        dbg!(av[63]);
    }

    #[test]
    #[should_panic]
    fn index_panics() {
        let av: AlignedVec<_, U32> = AlignedVec::from(&[0_u16; 64][..]);
        dbg!(av[64]);
    }

    #[cfg(target_arch = "x86_64")]
    #[test]
    fn load_si128_from_vec() {
        use std::arch::x86_64::{__m128i, _mm_load_si128};

        let av: AlignedVec<u64, U32> = (&[42; 2][..]).into();
        let bits = unsafe { _mm_load_si128(&av[0] as *const _ as *const __m128i) };
        dbg!(bits);
    }
}