1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
//! Puncturable pseudorandom function.
//!
//! This implementation and comments closely follows the one in libOTe.
use crate::util::aes_hash::FIXED_KEY_HASH;
use crate::util::aes_rng::AesRng;
use crate::util::tokio_rayon::{spawn_compute, AsyncThreadPool};
use crate::util::{log2_ceil, Block};
use aes::cipher::{BlockEncrypt, KeyInit};
use aes::Aes128;
use bitvec::vec::BitVec;
use futures::FutureExt;
use ndarray::Array2;
use num_integer::Integer;
use rand::Rng;
use rand_core::{CryptoRng, RngCore, SeedableRng};
use rayon::iter::{IntoParallelIterator, ParallelIterator};
use rayon::ThreadPool;
use seec_bitmatrix::BitMatrixView;
use serde::{Deserialize, Serialize};
use std::cmp::Ordering;
use std::fmt::Debug;
use std::num::NonZeroUsize;
use std::sync::{Arc, Mutex};
use std::thread::available_parallelism;
use std::{cmp, mem};
use thiserror::Error;
pub struct Sender {
conf: PprfConfig,
base_ots: Array2<[Block; 2]>,
}
pub struct Receiver {
conf: PprfConfig,
base_ots: Array2<Block>,
base_choices: Array2<u8>,
}
#[derive(Copy, Clone)]
pub struct PprfConfig {
pnt_count: usize,
domain: usize,
depth: usize,
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub enum Msg {
TreeGrp(TreeGrp),
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum PprfOutputFormat {
Plain,
InterleavedTransposed,
Interleaved,
}
impl PprfOutputFormat {
/// (rows, cols)
pub(crate) fn out_dims(&self, conf: PprfConfig) -> (usize, usize) {
match self {
PprfOutputFormat::InterleavedTransposed => {
(128, (conf.pnt_count * conf.domain + 127) / 128)
}
PprfOutputFormat::Interleaved => (conf.pnt_count * conf.domain, 1),
PprfOutputFormat::Plain => {
todo!()
}
}
}
}
#[derive(Debug)]
pub struct ChoiceBits {
pub(crate) pprf: Array2<u8>,
pub(crate) gap: BitVec,
}
impl Sender {
pub fn new(conf: PprfConfig, base_ots: Vec<[Block; 2]>) -> Self {
assert_eq!(conf.base_ot_count(), base_ots.len());
let base_ots = Array2::from_shape_vec((conf.pnt_count, conf.depth), base_ots).unwrap();
Self { conf, base_ots }
}
pub async fn expand<RNG>(
&mut self,
sender: seec_channel::Sender<Msg>,
value: Block,
format: PprfOutputFormat,
rng: &mut RNG,
thread_pool: Option<Arc<ThreadPool>>,
) -> Array2<Block>
where
RNG: RngCore + CryptoRng,
{
let conf = self.conf;
let num_threads = thread_pool
.as_ref()
.map(|pool| pool.current_num_threads())
.unwrap_or_else(|| {
available_parallelism()
.unwrap_or(NonZeroUsize::new(1).unwrap())
.into()
});
let (rows, cols) = format.out_dims(conf);
let output = Arc::new(Mutex::new(Array2::zeros((rows, cols))));
let aes = create_fixed_aes();
let seed: Block = rng.gen();
let base_ots = mem::take(&mut self.base_ots);
let depth = conf.depth;
let pnt_count = conf.pnt_count;
let output_clone = Arc::clone(&output);
let sender_cl = sender.clone();
let routine = move |thread_idx: usize| {
let mut rng = AesRng::from_seed(seed ^ thread_idx.into());
let dd = match format {
PprfOutputFormat::Interleaved => depth,
_ => depth + 1,
};
// tree will hold the full GGM tree. Note that there are 8
// independent trees that are being processed together.
// The trees are flattened to that the children of j are
// located at 2*j and 2*j+1.
let mut tree = vec![[Block::zero(); 8]; 2_usize.pow(dd as u32)];
for g in (thread_idx * 8..pnt_count).step_by(8 * num_threads) {
let mut tree_grp = TreeGrp {
g,
..Default::default()
};
// The number of real trees for this iteration.
let min = 8.min(pnt_count - g);
let level = bytemuck::cast_slice_mut(get_level(&mut tree, 0));
// Populate the zero'th level of the GGM tree with random seeds.
rng.fill_bytes(level);
tree_grp.sums[0].resize(depth, Default::default());
tree_grp.sums[1].resize(depth, Default::default());
for d in 0..depth {
let mut _opt_out_lock = None;
let (level0, level1) =
if format == PprfOutputFormat::Interleaved && d + 1 == depth {
let level0 = get_level(&mut tree, d);
_opt_out_lock = Some(output_clone.lock().unwrap());
let level1 = get_level_output(_opt_out_lock.as_mut().unwrap(), g, conf);
(level0, level1)
} else {
get_cons_levels(&mut tree, d)
};
// let (level0, level1) = get_cons_levels(&mut tree, d);
let width = level1.len();
let mut child_idx = 0;
// For each child, populate the child by expanding the parent.
while child_idx < width {
// Index of the parent in the previous level.
let parent_idx = child_idx >> 1;
// The value of the parent.
let parent = &mut level0[parent_idx];
// The bit that indicates if we are on the left child (0)
// or on the right child (1).
let mut keep = 0;
while keep < 2 {
// The child that we will write in this iteration.
let child = &mut level1[child_idx];
// The sum that this child node belongs to.
let sum = &mut tree_grp.sums[keep][d];
// Each parent is expanded into the left and right children
// using a different AES fixed-key. Therefore our OWF is:
//
// H(x) = (AES(k0, x) + x) || (AES(k1, x) + x);
//
// where each half defines one of the children.
aes[keep]
.encrypt_blocks_b2b(
Block::cast_slice(&*parent),
Block::cast_slice_mut(child),
)
.expect("Unequal block length is impossible");
child.iter_mut().zip(&mut *parent).for_each(|(c, p)| {
*c ^= *p;
});
// Update the running sums for this level. We keep
// a left and right totals for each level.
sum.iter_mut().zip(child).for_each(|(s, c)| {
*s ^= *c;
});
keep += 1;
child_idx += 1;
}
}
}
// For all but the last level, mask the sums with the
// OT strings and send them over.
let mut mask_sums = |idx: usize| {
tree_grp.sums[idx]
.iter_mut()
.take(depth - 1)
.enumerate()
.for_each(|(d, sums)| {
sums.iter_mut()
.enumerate()
.take(min)
.for_each(|(j, sum)| *sum ^= base_ots[[g + j, d]][idx])
});
};
mask_sums(0);
mask_sums(1);
// For the last level, we are going to do something special.
// The other party is currently missing both leaf children of
// the active parent. Since this is the last level, we want
// the inactive child to just be the normal value but the
// active child should be the correct value XOR the delta.
// This will be done by sending the sums and the sums plus
// delta and ensure that they can only decrypt the correct ones.
let d = depth - 1;
tree_grp.last_ots.resize(min, Default::default());
for j in 0..min {
// Construct the sums where we will allow the delta (mValue)
// to either be on the left child or right child depending
// on which has the active path.
tree_grp.last_ots[j][0] = tree_grp.sums[0][d][j];
tree_grp.last_ots[j][1] = tree_grp.sums[1][d][j] ^ value;
tree_grp.last_ots[j][2] = tree_grp.sums[1][d][j];
tree_grp.last_ots[j][3] = tree_grp.sums[0][d][j] ^ value;
// We are going to expand the two 128 bit OT strings
// into 256 bit OT strings using AES.
let mask_in = [
base_ots[[g + j, d]][0],
base_ots[[g + j, d]][0] ^ Block::all_ones(),
base_ots[[g + j, d]][1],
base_ots[[g + j, d]][1] ^ Block::all_ones(),
];
let masks = FIXED_KEY_HASH.cr_hash_blocks(&mask_in);
// Add the OT masks to the sums and send them over.
tree_grp.last_ots[j]
.iter_mut()
.zip(masks)
.for_each(|(ot, mask)| {
*ot ^= mask;
});
}
// Resize the sums so that they dont include
// the unmasked sums on the last level!
tree_grp.sums[0].truncate(depth - 1);
tree_grp.sums[1].truncate(depth - 1);
sender_cl
.blocking_send(Msg::TreeGrp(tree_grp.clone()))
.expect("Sending tree group failed");
if format != PprfOutputFormat::Interleaved {
let last_level = get_level(&mut tree, depth);
let mut output = output_clone.lock().unwrap();
copy_out(last_level, &mut output, pnt_count, g, conf, format);
}
}
};
let par_compute = move || {
// TODO: this changes the meaning of num_threads. By using par_iter, it becomes the
// maximum number of threads
(0..num_threads).into_par_iter().for_each(routine);
};
match thread_pool {
None => spawn_compute(par_compute),
Some(pool) => pool.spawn_install_compute(par_compute),
}
.await;
let output = Arc::try_unwrap(output).unwrap();
output.into_inner().unwrap()
}
}
impl Receiver {
pub fn new(conf: PprfConfig, base_ots: Vec<Block>, base_choices: ChoiceBits) -> Self {
assert_eq!(conf.base_ot_count(), base_ots.len());
assert_eq!(conf.base_ot_count(), base_choices.pprf.len());
let base_ots = Array2::from_shape_vec((conf.pnt_count, conf.depth), base_ots).unwrap();
Self {
conf,
base_ots,
base_choices: base_choices.pprf,
}
}
pub async fn expand(
&mut self,
mut receiver: seec_channel::Receiver<Msg>,
format: PprfOutputFormat,
thread_pool: Option<Arc<ThreadPool>>,
) -> Array2<Block> {
let conf = self.conf;
let num_threads = thread_pool
.as_ref()
.map(|pool| pool.current_num_threads())
.unwrap_or_else(|| {
available_parallelism()
.unwrap_or(NonZeroUsize::new(1).unwrap())
.into()
});
let (rows, cols) = format.out_dims(conf);
let output = Arc::new(Mutex::new(Array2::zeros((rows, cols))));
let points = self.get_points(PprfOutputFormat::Plain);
let aes = create_fixed_aes();
let base_ots = mem::take(&mut self.base_ots);
let base_choices = mem::take(&mut self.base_choices);
let depth = conf.depth;
let pnt_count = conf.pnt_count;
let output_clone = Arc::clone(&output);
let expected_trees = pnt_count / 8;
let (dist_sender, distributor) = crossbeam_channel::unbounded();
// this task distributes the tree groups to the compute tasks
let distribute_task = Box::pin(
async {
let mut received_items = 0;
while let Some(msg) = receiver.recv().await.transpose() {
match msg {
Ok(Msg::TreeGrp(tree_grp)) => {
received_items += 1;
dist_sender.try_send(tree_grp).unwrap();
}
_ => panic!("Error receiving msg"),
};
// Only take as many tree_grp as are expected
if received_items == expected_trees {
break;
}
}
}
.fuse(),
);
let routine = move |thread_idx: usize| {
// my_sums will hold the left and right GGM tree sums
// for each level. For example my_sums[5][0] will
// hold the sum of the left children for the 5th tree. This
// sum will be "missing" the children of the active parent.
// The sender will give of one of the full sums so we can
// compute the missing inactive child.
let mut my_sums = [[Block::zero(); 8]; 2];
// // A buffer for receiving the sums from the other party.
// // These will be masked by the OT strings.
// let mut their_sums: [Vec<[Block; 8]>; 2] = Default::default();
// their_sums[0].resize(depth - 1, [Block::zero(); 8]);
// their_sums[1].resize(depth - 1, [Block::zero(); 8]);
let dd = match format {
PprfOutputFormat::Interleaved => depth,
_ => depth + 1,
};
// let dd = depth + 1;
let mut tree = vec![[Block::zero(); 8]; 1 << dd];
(thread_idx * 8..pnt_count)
.step_by(8 * num_threads)
.for_each(|_| {
let tree_group = distributor.recv().unwrap();
let g = tree_group.g;
let l1 = get_level(&mut tree, 1);
for i in 0..8 {
// For the non-active path, set the child of the root node
// as the OT message XOR'ed with the correction sum.
let not_ai = base_choices[[i + g, 0]] as usize;
l1[not_ai][i] = base_ots[[i + g, 0]] ^ tree_group.sums[not_ai][0][i];
// not_ai is either 0 or 1, so we flip it
l1[not_ai ^ 1][i] = Block::zero();
}
// For all other levels, expand the GGM tree and add in
// the correction along the active path.
for d in 1..depth {
// level0: The already constructed level. Only missing the
// GGM tree node value along the active path.
// level1: The next level that we want to construct.
let mut _opt_out_lock = None;
let (level0, level1) = if format == PprfOutputFormat::Interleaved
&& d + 1 == depth
{
let level0 = get_level(&mut tree, d);
_opt_out_lock = Some(output_clone.lock().unwrap());
let level1 = get_level_output(_opt_out_lock.as_mut().unwrap(), g, conf);
(level0, level1)
} else {
get_cons_levels(&mut tree, d)
};
// let (level0, level1) = get_cons_levels(&mut tree, d);
// Zero out the previous sums.
my_sums = [[Block::zero(); 8]; 2];
// We will iterate over each node on this level and
// expand it into it's two children. Note that the
// active node will also be expanded. Later we will just
// overwrite whatever the value was. This is an optimization.
let width = level1.len();
let mut child_idx = 0;
while child_idx < width {
// Index of the parent in the previous level.
let parent_idx = child_idx >> 1;
// The value of the parent.
let parent = &mut level0[parent_idx];
// The bit that indicates if we are on the left child (0)
// or on the right child (1).
let mut keep = 0;
while keep < 2 {
// The child that we will write in this iteration.
let child = &mut level1[child_idx];
// Each parent is expanded into the left and right children
// using a different AES fixed-key. Therefore our OWF is:
//
// H(x) = (AES(k0, x) + x) || (AES(k1, x) + x);
//
// where each half defines one of the children.
aes[keep]
.encrypt_blocks_b2b(
Block::cast_slice(&*parent),
Block::cast_slice_mut(child),
)
.expect("Unequal block length is impossible");
child.iter_mut().zip(&mut *parent).for_each(|(c, p)| {
*c ^= *p;
});
let sum = &mut my_sums[keep];
// Update the running sums for this level. We keep
// a left and right totals for each level.
sum.iter_mut().zip(child).for_each(|(s, c)| {
*s ^= *c;
});
keep += 1;
child_idx += 1;
}
}
// For everything but the last level we have to
// 1) fix our sums so they dont include the incorrect
// values that are the children of the active parent
// 2) Update the non-active child of the active parent.
if d != depth - 1 {
for i in 0..8 {
let leaf_idx = points[i + g];
let active_child_idx = leaf_idx >> (depth - 1 - d);
let inactive_child_idx = active_child_idx ^ 1;
let not_ai = inactive_child_idx & 1;
let inactive_child = &mut level1[inactive_child_idx][i];
let correct_sum = *inactive_child ^ tree_group.sums[not_ai][d][i];
*inactive_child =
correct_sum ^ my_sums[not_ai][i] ^ base_ots[[i + g, d]];
}
}
}
// Now processes the last level. This one is special
// because we we must XOR in the correction value as
// before but we must also fixed the child value for
// the active child. To do this, we will receive 4
// values. Two for each case (left active or right active).
let mut output = output_clone.lock().unwrap();
let level = if format == PprfOutputFormat::Interleaved {
get_level_output(&mut output, g, conf)
} else {
get_level(&mut tree, depth)
};
// let level = get_level(&mut tree, depth);
let d = depth - 1;
for j in 0..8 {
// The index of the child on the active path.
let active_child_idx = points[j + g];
// The index of the other (inactive) child.
let inactive_child_idx = active_child_idx ^ 1;
// The indicator as to the left or right child is inactive
let not_ai = inactive_child_idx & 1;
// We are going to expand the 128 bit OT string
// into a 256 bit OT string using AES.
let mask_in = [
base_ots[[g + j, d]],
base_ots[[g + j, d]] ^ Block::all_ones(),
];
let masks = FIXED_KEY_HASH.cr_hash_blocks(&mask_in);
// now get the chosen message OT strings by XORing
// the expended (random) OT strings with the lastOts values.
let ots = [0, 1].map(|i| tree_group.last_ots[j][2 * not_ai + i] ^ masks[i]);
// We need to do this little dance as we can't just mutably alias level
let children = match active_child_idx.cmp(&inactive_child_idx) {
Ordering::Less => {
let (left, right) = level.split_at_mut(inactive_child_idx);
[&mut right[0], &mut left[active_child_idx]]
}
Ordering::Greater => {
let (left, right) = level.split_at_mut(active_child_idx);
[&mut left[inactive_child_idx], &mut right[0]]
}
Ordering::Equal => unreachable!(
"Impossible, active and inactive indices are always different"
),
};
let [inactive_child, active_child] = children.map(|arr| &mut arr[j]);
// Fix the sums we computed previously to not include the
// incorrect child values.
let inactive_sum = my_sums[not_ai][j] ^ *inactive_child;
let active_sum = my_sums[not_ai ^ 1][j] ^ *active_child;
*inactive_child = ots[0] ^ inactive_sum;
*active_child = ots[1] ^ active_sum;
}
// copy the last level to the output. If desired, this is
// where the tranpose is performed.
if format != PprfOutputFormat::Interleaved {
let last_level = get_level(&mut tree, depth);
copy_out(last_level, &mut output, pnt_count, g, conf, format);
}
});
};
let par_compute = move || {
// TODO: this changes the meaning of num_threads. By using par_iter, it becomes the
// maximum number of threads
(0..num_threads).into_par_iter().for_each(routine);
};
let compute_fut = match thread_pool {
None => spawn_compute(par_compute),
Some(pool) => pool.spawn_install_compute(par_compute),
};
tokio::join!(distribute_task, compute_fut);
let output = Arc::try_unwrap(output).unwrap();
output.into_inner().unwrap()
}
// Returns indices of points
pub fn get_points(&self, format: PprfOutputFormat) -> Vec<usize> {
match format {
PprfOutputFormat::Plain => self
.base_choices
.rows()
.into_iter()
.map(|choice_bits| get_active_path(choice_bits.as_slice().unwrap()))
.collect(),
PprfOutputFormat::Interleaved | PprfOutputFormat::InterleavedTransposed => {
let mut points = self.get_points(PprfOutputFormat::Plain);
interleave_points(&mut points, self.conf.domain, format);
points
}
}
}
pub fn sample_choice_bits<RNG: RngCore + CryptoRng>(
conf: PprfConfig,
modulus: usize,
format: PprfOutputFormat,
rng: &mut RNG,
) -> ChoiceBits {
let mut choices =
Array2::default((Integer::next_multiple_of(&conf.pnt_count, &8), conf.depth));
for (i, mut choice_row) in choices.rows_mut().into_iter().enumerate() {
match format {
PprfOutputFormat::Plain => {
let mut idx;
loop {
choice_row
.iter_mut()
.for_each(|choice| *choice = rng.gen::<bool>() as u8);
idx = get_active_path(choice_row.as_slice().unwrap());
if idx < modulus {
break;
}
}
}
PprfOutputFormat::Interleaved | PprfOutputFormat::InterleavedTransposed => {
// make sure that atleast the first element of this tree
// is within the modulus.
let mut idx = interleave_point(0, i, conf.pnt_count, conf.domain, format);
assert!(idx < modulus, "Iteration {i}, failed: {idx} < {modulus}");
loop {
choice_row
.iter_mut()
.for_each(|choice| *choice = rng.gen::<bool>() as u8);
idx = get_active_path(choice_row.as_slice().unwrap());
idx = interleave_point(idx, i, conf.pnt_count, conf.domain, format);
if idx < modulus {
break;
}
}
}
}
}
ChoiceBits::from_arr2(choices)
}
}
impl PprfConfig {
pub fn new(domain: usize, pnt_count: usize) -> Self {
let depth = log2_ceil(domain) as usize;
Self {
pnt_count,
domain,
depth,
}
}
pub fn base_ot_count(&self) -> usize {
self.depth * self.pnt_count
}
pub fn pnt_count(&self) -> usize {
self.pnt_count
}
pub fn domain(&self) -> usize {
self.domain
}
pub fn depth(&self) -> usize {
self.depth
}
}
impl ChoiceBits {
pub fn from_arr2(arr: Array2<u8>) -> Self {
Self {
pprf: arr,
gap: Default::default(),
}
}
pub fn as_bit_vec(&self) -> BitVec {
BitVec::from_iter(self.iter())
}
pub fn iter(&self) -> impl Iterator<Item = bool> + '_ {
self.pprf
.iter()
.map(|bit| *bit != 0)
.chain(self.gap.iter().by_vals())
}
pub fn take_gap_choices(&mut self) -> BitVec {
mem::take(&mut self.gap)
}
}
// Create a pair of fixed key aes128 ciphers
fn create_fixed_aes() -> [Aes128; 2] {
[
Aes128::new(
&91389970179024809574621370423327856399_u128
.to_le_bytes()
.into(),
),
Aes128::new(
&297966570818470707816499469807199042980_u128
.to_le_bytes()
.into(),
),
]
}
// Returns the i'th level of the current 8 trees. The
// children of node j on level i are located at 2*j and
// 2*j+1 on level i+1.
fn get_level(tree: &mut [[Block; 8]], i: usize) -> &mut [[Block; 8]] {
let size = 1 << i;
let offset = size - 1;
&mut tree[offset..offset + size]
}
// Todo: choice_bits contains bits as individual u8, we can probably
// refactor this to use bitvec
fn get_active_path(choice_bits: &[u8]) -> usize {
choice_bits.iter().enumerate().fold(0, |point, (i, &cb)| {
let shift = choice_bits.len() - i - 1;
point | ((1 ^ cb as usize) << shift)
})
}
fn interleave_points(points: &mut [usize], domain: usize, format: PprfOutputFormat) {
let total_trees = points.len();
points
.iter_mut()
.enumerate()
.for_each(|(i, point)| *point = interleave_point(*point, i, total_trees, domain, format))
}
fn interleave_point(
point: usize,
tree_idx: usize,
total_trees: usize,
domain: usize,
format: PprfOutputFormat,
) -> usize {
match format {
PprfOutputFormat::Plain => {
panic!("interleave_point called on PprfOutputFormat::Plain")
}
PprfOutputFormat::InterleavedTransposed => {
let num_sets = total_trees / 8;
let set_idx = tree_idx / 8;
let sub_idx = tree_idx % 8;
let section_idx = point / 16;
let pos_idx = point % 16;
let set_offset = set_idx * 128;
let sub_offset = sub_idx + 8 * pos_idx;
let sec_offset = section_idx * num_sets * 128;
set_offset + sub_offset + sec_offset
}
PprfOutputFormat::Interleaved => {
if domain <= point {
return usize::MAX;
}
let sub_tree = tree_idx % 8;
let forest = tree_idx / 8;
(forest * domain + point) * 8 + sub_tree
}
}
}
#[derive(Serialize, Deserialize, Default, Clone, Debug)]
pub struct TreeGrp {
g: usize,
sums: [Vec<[Block; 8]>; 2],
last_ots: Vec<[Block; 4]>,
}
#[derive(Error, Debug)]
pub enum ExpandError {
#[error("unknown error")]
Unknown,
}
fn get_level_output(
output: &mut Array2<Block>,
tree_idx: usize,
conf: PprfConfig,
) -> &mut [[Block; 8]] {
let out = bytemuck::cast_slice_mut(output.as_slice_mut().unwrap());
let forest = tree_idx / 8;
assert_eq!(tree_idx % 8, 0);
// let size = 1 << (conf.depth);
let start = forest * conf.domain;
&mut out[start..start + conf.domain]
}
// Return the i'th and (i+1)'th level
fn get_cons_levels(tree: &mut [[Block; 8]], i: usize) -> (&mut [[Block; 8]], &mut [[Block; 8]]) {
let size0 = 1 << i;
let offset0 = size0 - 1;
let tree = &mut tree[offset0..];
let (level0, rest) = tree.split_at_mut(size0);
let size1 = 1 << (i + 1);
debug_assert_eq!(size0 + offset0, size1 - 1);
let level1 = &mut rest[..size1];
(level0, level1)
}
fn copy_out(
lvl: &[[Block; 8]],
output: &mut Array2<Block>,
total_trees: usize,
t_idx: usize,
_conf: PprfConfig,
format: PprfOutputFormat,
) {
assert_eq!(total_trees % 8, 0, "Number of trees must be dividable by 8");
assert_eq!(lvl.len() % 16, 0, "lvl len() must be dividable by 16");
assert!(
lvl.len() >= 16,
"Lvl must have size of at least 16. Size is: {}",
lvl.len()
);
match format {
PprfOutputFormat::Plain => {
todo!()
}
PprfOutputFormat::InterleavedTransposed => {
let set_idx = t_idx / 8;
let block_per_set = lvl.len() * 8 / 128;
let num_sets = total_trees / 8;
let step = num_sets;
let end = cmp::min(set_idx + step * block_per_set, output.ncols());
let mut i = set_idx;
let mut k = 0;
while i < end {
// get 128 blocks
let input_128: &[u8] = bytemuck::cast_slice(&lvl[k * 16..(k + 1) * 16]);
let bm_view = BitMatrixView::from_slice(input_128, 128, 128);
// TODO ughh, this is really inefficient. I should really have an in-place transpose
// or maybe one that takes an out buffer so that i don;t allocate all the time
let transposed = bm_view.transpose().into_vec();
let transposed_blocks = transposed
.chunks_exact(16)
.map(|chunk| Block::try_from(chunk).expect("Blocks are 16 bytes"));
output
.rows_mut()
.into_iter()
.zip(transposed_blocks)
.for_each(|(mut row, block)| {
row[i] = block;
});
i += step;
k += 1;
}
}
PprfOutputFormat::Interleaved => {
panic!("Do not copy_out for Interleaved")
}
}
}
#[cfg(test)]
pub(crate) mod tests {
use crate::silent_ot::pprf::{ChoiceBits, PprfConfig, PprfOutputFormat, Receiver, Sender};
use crate::util::Block;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use rand_core::{CryptoRng, RngCore};
use seec_bitmatrix::BitMatrixView;
use tokio::time::Instant;
pub(crate) fn fake_base<RNG: RngCore + CryptoRng>(
pprf_conf: PprfConfig,
modulus: usize,
format: PprfOutputFormat,
rng: &mut RNG,
) -> (Vec<[Block; 2]>, Vec<Block>, ChoiceBits) {
let base_ot_count = pprf_conf.base_ot_count();
let msg2: Vec<[Block; 2]> = (0..base_ot_count).map(|_| rng.gen()).collect();
let choices = Receiver::sample_choice_bits(pprf_conf, modulus, format, rng);
let msg = msg2
.iter()
.zip(choices.iter())
.map(|(m, c)| m[c as usize])
.collect();
(msg2, msg, choices)
}
#[tokio::test(flavor = "multi_thread")]
async fn silent_pprf_inter_trans() {
let now = Instant::now();
let conf = PprfConfig::new(334, 5 * 8);
let format = PprfOutputFormat::InterleavedTransposed;
let mut rng = StdRng::seed_from_u64(42);
let threads = 1;
let ((sender_ch, _), (_, receiver_ch)) = seec_channel::in_memory::new_pair(128);
let (sender_base_ots, receiver_base_ots, base_choices) =
fake_base(conf, conf.domain * conf.pnt_count, format, &mut rng);
let send_pool = rayon::ThreadPoolBuilder::new()
.num_threads(threads)
.build()
.unwrap()
.into();
let recv_pool = rayon::ThreadPoolBuilder::new()
.num_threads(threads)
.build()
.unwrap()
.into();
let send = tokio::spawn(async move {
let mut sender = Sender::new(conf, sender_base_ots);
sender
.expand(
sender_ch,
Block::all_ones(),
format,
&mut rng,
Some(send_pool),
)
.await
});
let mut receiver = Receiver::new(conf, receiver_base_ots, base_choices);
let points = receiver.get_points(format);
let receive =
tokio::spawn(
async move { receiver.expand(receiver_ch, format, Some(recv_pool)).await },
);
let (r_out, s_out) = futures::future::try_join(receive, send).await.unwrap();
println!("Total time: {}", now.elapsed().as_secs_f32());
let out = r_out ^ s_out;
let out_t =
BitMatrixView::from_slice(out.as_slice().unwrap(), out.nrows(), out.ncols() * 128)
.fast_transpose()
.into_vec();
//
// transpose(
// bytemuck::cast_slice(out.as_slice().unwrap()),
// out.nrows(),
// out.ncols() * 128, // * 128 because of Block size
// );
// let out_t: &[Block] = bytemuck::cast_slice(&out_t);
for (i, blk) in out_t.iter().enumerate() {
let f = points.contains(&i);
let exp = if f { Block::all_ones() } else { Block::zero() };
assert_eq!(*blk, exp, "block {i} not as expected");
}
}
#[tokio::test(flavor = "multi_thread")]
async fn silent_pprf_inter() {
let now = Instant::now();
let conf = PprfConfig::new(334, 5 * 8);
let format = PprfOutputFormat::Interleaved;
let mut rng = StdRng::seed_from_u64(42);
let threads = 1;
let ((sender_ch, _), (_, receiver_ch)) = seec_channel::in_memory::new_pair(128);
let (sender_base_ots, receiver_base_ots, base_choices) =
fake_base(conf, conf.domain * conf.pnt_count, format, &mut rng);
let send_pool = rayon::ThreadPoolBuilder::new()
.num_threads(threads)
.build()
.unwrap()
.into();
let recv_pool = rayon::ThreadPoolBuilder::new()
.num_threads(threads)
.build()
.unwrap()
.into();
let send = tokio::spawn(async move {
let mut sender = Sender::new(conf, sender_base_ots);
sender
.expand(
sender_ch,
Block::all_ones(),
format,
&mut rng,
Some(send_pool),
)
.await
});
let mut receiver = Receiver::new(conf, receiver_base_ots, base_choices);
let points = receiver.get_points(format);
let receive =
tokio::spawn(
async move { receiver.expand(receiver_ch, format, Some(recv_pool)).await },
);
let (r_out, s_out) = futures::future::try_join(receive, send).await.unwrap();
println!("Total time: {}", now.elapsed().as_secs_f32());
let out = r_out ^ s_out;
let out: &[Block] = out.as_slice().unwrap();
dbg!(&points);
for p in &points {
dbg!(p, out[*p]);
}
for (i, blk) in out.iter().enumerate() {
let f = points.contains(&i);
let exp = if f { Block::all_ones() } else { Block::zero() };
assert_eq!(*blk, exp, "block {i} not as expected");
}
}
}